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On the motion of a non-conducting body through a 
perfectly conducting fluid 

By K. STEWARTSON 
Department of Mathematics, Durham University, Durham 

(Received 24 September 1959) 

The motion of bodies in a direction parallel to an applied magnetic field and 
through a perfectly conducting fluid is considered. It is shown that the per- 
turbation in the state of the fluid cannot remain small except in the particular 
case when the velocity U of the body is much smaller than that of the Alfvh 
waves in the fluid. In  this case, however, the perturbation is not confined to the 
neighbourhood of the body, and extends to infinity inside planes which touch the 
body and are parallel to the undisturbed magnetic field. In  addition the body 
experiences a drag. 

1. Introduction 
In  a previous paper (Stewartson 1956) the motion of a sphere through a con- 

ducting fluid in the presence of a strong magnetic field was considered, attention 
being focused on the ultimate flow pattern assuming that it is steady. It was found 
that the magnetic field is completely undisturbed but that the velocity field is 
cylindrical, being independent of the co-ordinate in the direction of the magnetic 
field. Further, the cylinder C circumscribing the sphere and having its generators 
parallel to the magnetic field separates two regions with different flow properties: 
for example, inside C the fluid moves with the sphere as if solid. 

The chief assumptions in this theory are that the sphere is a perfect conductor, 
that the fluid velocity is small compared with the Alfvh velocity and that the 
magnetic Reynolds number is small. In  particular the theory could not apply 
to a perfectly conducting fluid. The reason for this limitation is that if both the 
body and the fluid are perfect conductors there is nothing to prevent the build-up 
of current in the fluid until the magnetic field is seriously perturbed; accordingly, 
the implicit assumption of small disturbances in the magnetic field is invalidated. 

If, however, the body is a non-conductor no such difficulty arises for it radiates 
Alfvhn waves into the fluid which serve to control the build-up of current and, 
in all probability, to keep the disturbances small. It is possible therefore to apply 
the general method developed earlier to these problems, which are of interest 
at the present time. 

In  the present paper we shall make a start on this programme concentrating 
attention solely on two-dimensional flows in an aligned magnetic field, i.e. the 
direction of motion of the body relative to the fluid at infinity is parallel to the 
magnetic field at  infinity. First, in $ 2  the equations of motion of a perfectly 
conducting fluid are reduced to a single equation for the stream function $ 
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of the motion but which contains two arbitrary functions af $. If these functions 
are constants, @ satisfies Laplace’s equation and a theory of thin aerofoils based 
on this equation has been developed by Sears & Resler (1959). This theory is 
discussed in the light of the present work in $ 7 .  

In  $ 3  the boundary conditions are set out, particular attention being paid to 
the circumstances in which it is legitimate to require continuity of the tangential 
component of the magnetic field across the surface of the body. The general 
unsteady motion of the fluid around a thin aerofoil is analysed in $ 4  on the 
assumption that the disturbances are small. It is shown that if ultimately the 
flow becomes steady and the perturbations from the undisturbed state are small, 
the effect of the body on the fluid is non-vanishing at infinity in general. How- 
ever, on applying the general properties of the ultimate steady flow to determine 
the flow pattern round a thin aerofoil a contradiction is found because the 
magnetic field inside the body is seriously affected and with it the velocity field 
ahead and behind the body. Accordingly, we must conclude that the perturbations 
if ultimately steady cannot have remained small. There remains, however, one 
special case, that of a strong magnetic field in which the fluid velocity is in general 
much smaller than the Alfven velocity. It turns out that the small perturbation 
theory can be applied here without contradiction because the fluid velocity and 
not merely its perturbation component may be assumed small. In  $ 6 this problem 
is considered and a full solution obtained for a circular cylinder; other bodies, 
including thin aerofoils, may be treated if desired. It is concluded that the 
magnetic field is only slightly disturbed except at two points, but that the 
magnetic field at infinity is no longer uniform. Further, the fluid inside the 
planes, which touch the cylinder and are parallel to the undisturbed magnetic 
field, moves with the cylinder as if solid; the fluid outside them is at  rest. It is 
noted that many of the features of the motions described earlier (Stewartson 
1956) are repeated here: the differences may be ascribed to the finite conductivity 
of the fluid in the earlier problem. 

2. Equations of motion 

permeability unity, electrical conductivity cr and kinematic viscosity v are 
The equations governing the motion of an incompressible fluid of density p, 

divq = 0, 12.1) 
aq ---qAcurlq = -grad 
at 

1 
curl (q A H) = __ V2H, 

aH 
at 4na 
_ _  

(2 .2 )  

(2.3) 

where q is the velocity of the fluid, H the magnetic field and p the pressure. The 
units are Gaussian. In these equations it is assumed that the effects of the flow of 
charged particles and of the temporal variation of the displacement vector on the 
current are negligible. Once the initial uniform magnetic field has been set up, 
these assumptions can be justified in the types of flow considered here. 

Consider the particular case of the steady two-dimensional flow of a perfectly 
conducting inviscid fluid. If, in addition, the velocity of the fluid and the 

6-2 
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magnetic field are parallel at  infinity, equations (2.1)-(2.3) may be formally 
simplified. For, using an orthogonal Cartesian triad Oxyz as frame of reference 
and taking q, H to be parallel to the plane z = 0, we may write, from (2.1), 

where q = (u, v, 0) and $ is a stream function. Then from (2.3), since v = 00, 

qAH = Ak, 

where k is a unit vector parallel to the z-axis and A is a constant scalar. Further, 
since q is parallel to H at infinity, A = 0, whence 

H = aq. (2.5 1 
Here a is a scalar function of position, which may be shown to be a function of 
$only by the use of the equation div H = 0. On substituting into (2 .2 )  and setting 
v = 0, we obtain 

- q A curl q = -grad (a($) curl q -a’(+) q A grad $} A q, 

i.e. 

so that 

where ,d(+), like a($), is an arbitrary function of + which must be determined 
before (2.6) can be solved for +. 

Suppose now that at infinity upstream the velocity is uniform with com- 
ponents ( U ,  0,O) and that the magnetic field is uniform with components (Ha, 0,O). 
Then 

a(+) = H*/U, P($) = 0, (2.7) 

since $ -+ Uy as x -+ co, and hence 

V2$ = 0 

on all streamlines starting from an infinite distance upstream. Then if we can 
be sure that no streamline in the flow is closed and that none starts and ends a t  
an infinite distance downstream, we may conclude that the motion of the fluid 
is exactly the same as when the magnetic field is absent and that the magnetic 
lines of force coincide with the streamlines. In  addition as may be seen from the 
next section, the boundary conditions on a fixed solid body, consisting of non- 
magnetic insulating material, are all satisfied because the magnetic field is 
tangential to it on its surface. 

However, we have no guarantee that in any steady motion which can be set 
up from rest a($) must be constant, nor can we be sure that every streamline in 
the flow field starts from an infinite distance upstream. If the fluid is set into 
motion with constant velocity (U, 0 , O )  at infinity and moves past a fixed ob- 
stacle, the velocity field at t = O f  will certainly be irrotational. If in addition 
a uniform magnetic field (Ha, 0 , O )  has been applied, at infinity the magnetic 
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field will still be uniform at t = O + .  Hence, c u r l ( q ~ H )  + 0 at t = O +  so that 
H must begin to change. Part of this change is accounted for by the convection 
of the magnetic field by the fluid and part by the Alfvhn waves set up to ensure 
that the new magnetic field satisfies the boundary conditions at the body. These 
waves start at the body and move relative to the fluid with a velocity 

(2.9) 

Accordingly downstream of the body these waves can be expected to reach infinity 
where, unless their strength has declined to infinitesimal proportions, they will 
modify the flow and disturb the values of a, p assumed in (2.7). It is conceivable, 
for example, that they could cause a reversed flow behind the body. A similar 
argument holds upstream of the body except that the absolute velocity of the 
Alfven waves is reduced, since they are being propagated against the direction 
of motion of the fluid. If, however, 

(2.10) 

we can expect them to reach infinity upstream and again they may distort the 
values of a, /3 leading to a rotational motion of the fluid everywhere. On the 
other hand, if 

U > -  HCE (2.11) 
(47rPP ’ 

Alfvh waves can only penetrate to infinity upstream by a more indirect process, 
since in the region where the flow is almost undisturbed their relative velocity is 
too small to permit any penetration in the upstream direction. Hence at any 
stage the velocity field ahead of the furthest point hitherto reached by the 
AIfv6n wave must have been seriously weakened by the presence of the body 
before the waves can penetrate further. This requirement seems to be too strin- 
gent and it appears reasonable to conjecture that, on the streamlines which come 
from infinity upstream, (2.8) holds with (2.11). These streamlines need not cover 
the whole region outside the body, however, and the possibility of closed stream- 
lines near the forward stagnation point and of reversed flow behind the body 
cannot be excluded. 

In  view of the doubts which have been expressed about the validity of using 
(2.8) to describe the whole field of flow, it is worth discussing in a particular case 
the way in which the motion develops as t increases and the ultimate motion 
which is produced as t -+ co. Before doing this, however, we shall discuss the 
appropriate boundary conditions which are not all immediately obvious. 

3. Boundary conditions 
We consider the problem of a fixed body in a perfectly conducting inviscid 

fluid which at time t = 0 is given a velocity U at infinity in the direction of x 
increasing. At the same or earlier time a magnetic field of magnitude H ,  is 
imposed in the same direction. The following boundary conditions can be written 
down at once. First, at t = O +  the velocity field is the irrotational field which 
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would be appropriate to this problem if there were no magnetic field. The 
magnetic field is still uniform and of magnitude H ,  at t = O +  . Secondly, at an 
infinite distance from the body 

q -+ (u, O , O ) ,  H -+ (H,, 0 , O )  (3.1) 

at any Jinite time t ,  since all disturbances start from the body. This does not 
imply that (3.1) holds at  an infinite time. 

In  order to ascertain the correct boundary conditions at the body some care 
is needed. We shall suppose that the body is composed of a non-magnetic, non- 
conducting material so that it is not a source of magnetic field and in it (T = 0. 
Two conditions at the surface of the body, namely, that the normal components 
of the magnetic field and of the velocity must be continuous and zero, respec- 
tively, are clear either from the equation of continuity or on physical grounds. 
If  the normal component of the magnetic field vanishes on the body then there 
is no restriction on the tangential components of the magnetic field, the reason 
being that surface currents cannot be dispersed. In  general, however, we cannot 
assume that the normal component of the magnetic field is zero at  the body and 
we shall obtain the conditions on the tangential components when it does not 
vanish. 

If the boundary of a perfectly conducting fluid is free it has aIready been 
shown (Stewartson 1957) that the tangential component of the magnetic field 
must be continuous. An initial forced discontinuity is immediately dispersed, 
travelling into the fluid as an Alfven wave. This result was proved by considering 
an inviscid fluid of large but finite conductivity IT and proceeding to the limit 
CT -+ 00. There was no need to assume that the fluid had a small coefficient of 
kinematic viscosity v and to allow v + 0 independently because viscous effects 
in this problem are of the second order. The reason is that the adjustment of the 
velocity field to preserve a continuous tangential component of stress at  the 
boundary is vanishingly small as v -+ 0. At a solid boundary, however, viscous 
effects may matter because the appropriate condition is that q = 0 at the boun- 
dary. Hence as v -+ 0 a boundary layer in q must develop which may have serious 
effects on the magnetic field. The mutual effects of the velocity and magnetic 
fields can be determined from the following problem of steady motion. 

A fluid of conductivity (T and kinematic viscosity v is in contact with a fixed 
solid insulator along the plane x = 0. In  the solid, which occupies the region 
x < 0, the magnetic field is (H,, K, 0) and in the fluid the magnetic field is 
(H,, h, 0)  and the velocity field is (0, v, 0). In  the fluid a t  large distances from the 
solid v -+ U, h -+ H+. The motion is one-dimensional so that v, h are functions of 
x only; all other quantities being constant. The equations governing the motion 
of the fluid, (2.1)-(2.3)) then reduce to 

The appropriate boundary conditions are that 

v,+U, h-+H+ as x+00+, 

v = O ,  h = H -  as x+O, 

(3.2) 

(3.3) 
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since for a fluid of $finite conductivity all components of the magnetic field are 
continuous at its boundary. The solution of (3.2) subject to (3.3) is 

V =  H+ - H- [ I -  exp { - H, z (;) ")] . 
474 pvu)" 

H -H- Hence U i L f  
4n(pvr)4 

(3.4) 

(3.5) 

and is not arbitrary. Now if we let v --f 0, u -+ co to obtain a perfectly conducting 
inviscid fluid it follows that 

h = H - ,  v = O  if x < O ;  

h = H,, v = (H+-  H-)/4n(pvc~)h if x > 0, 

a magnetohydrodynamic boundary layer of a particularly simple kind being 
formed at  z = 0. Thus in this specific problem it is not necessary that the tan- 
gential component of q should be zero at the boundary or that the tangential 
components of H must be continuous in the limit v+O, c~-- tco.  We must, - 
however, have 

where [ 1, denotes 'the leap in the tangential component of'. The value of vu 
for a perfectly conducting inviscid fluid is indeterminate, but for a real fluid 
which is highly conducting and almost inviscid it can be worked out from the 
known physical properties. Actually in fluids of importance in terrestrial and 
interplanetary experiments v r  is invariably very small and so in this paper we 
shall replace (3.6) by 

[HI, = 0, (3.7) 

but there is no special difficulty about using (3.6). 
Although (3.6) has been deduced for one specific and simple case the general- 

ization to a curved wall and a general magnetohydrodynamic field is immediate. 
For, when r is large and v small the changes implied in (3.4) occur so rapidly in 
the x-direction that other changes due to wall curvature, etc., are negligible. 
The relevant equations governing the magnetohydrodynamic boundary layer 
at the wall are therefore identical with (3.2) and we conclude that (3.6) is a general 
condition on q, H which must be satisfied at the boundary of a solid insulator 
with a perfectly conducting inviscid fluid. 

If initially the motion is such that (3.6) is not satisfied then the manner in 
which the appropriate discontinuities are dispersed may easily be investigated 
and follows the same lines as when the boundary of the fluid is free. It will not 
be given here; it is merely pointed out that just as in the case of a free boundary 
the dispersion is immediate. The interested reader can readily work out the 
details for himself using the arguments of Stewartson (1957) and the corre- 
sponding equations allowing for viscosity. These equations have been discussed 
by Ludford (1959) in a related problem of magnetohydrodynamics. 
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4. Unsteady perturbations in a perfectly conducting fluid 
In  this section we consider the perturbation induced by a thin body placed 

along the x-axis, assuming that at time t < 0 the magnetic field is (H,,O,O), 
and that the fluid is set in motion at  t = 0 with a velocity ( U ,  0 , O )  at infinity. 
Since the body is thin we can write 

q = (U+u,v,O), H = (H,+h,, h,, O ) ,  (4.1) 

where u, v, h,, hv are all small. Neglecting squares and products of these small 
quantities and setting v = 0, v = co, equations (2.1)-(2.3) reduce to 

where 

au au ap H, ah, av av ap H, ahy 
at ax ax 477p ax at ax ay 4jlrP ax 
-+u-= -+-- -+ u- = - +-- 

P H2, P = -----+const. 
P 477P 

(4.3) 

(4.41 

These equations may be divided into two parts. First, there is a part which is 
directly due to P and which may easily be seen to be irrotational. Denoting its 
contributions to q, H by a superscript (1) and writing 

The second part is explicitly independent of P and is wave-like. Denoting its 
contributions to q, H by a superscript (2) 

with corresponding equations for v@), hg), the two pairs of functions being con- 
nected by (4.2). These solutions correspond to the Alfvh waves mentioned in 
$ 2  and we see that in this small disturbance theory the irrotational and 
wave-like motions are additive. 

The solution of (4.8) for d2) is 

u(2) mx mx 
-- U =f(t( 1 +m) U’ y) +’(‘+(I -m) y) 

(4.9) 

where f, g are arbitrary functions and 

H,m = U(477p)&, 
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m being the ratio of the velocity of the undisturbed fluid to the velocity of the 
Alfven waves. All disturbances to the motion originate at the body, none come 
from infinity, and hence if m < 1 

mx 
u(2) = uf t - - -  , hg) = -mH, f when x > 0, (4.10) 

(4.11) 

{ ( l + m ) U ’ 4  

( l - m ) u ’ y ]  
mx , hg) = mHmg when 5 < 0, 

while if m > 1 

u(2) = U ( f + g ) ,  hg) = mHm(g- f) when x > 0, (4.12) 

d2) = h(,2) = 0 when x < 0, (4.13) 

from which v(2), h t )  may be written down. 

assume, the motion is ultimately steady. Hence writing 
In particular as t + co these functions become independent oft  if, as we shall 

(4.14) 

6 2 ) = Uf(y), hg’ = -mH,f(y), v(2) = = 0 (2 > O ) ,  } (4.15) 

} 

Y 

d2) = Ug(y), h2) = mHmg(y), d2) = h(2) Y = o (5 < 0)) 

while if m > 1 

d2) = U{f(y) + g(y)}, h(,2) = mH,{g(y) -f(y)}, v(2) = h(2) Y = 0, for x > 0, 

~ ( 2 )  = ~ ( 2 )  = h(2) - h(2) = 0 for x < 0. 2 -  Y 
(4.16) 

Hence, if the disturbances are always small, it is given, if the ultimate motion 
is steady, by the sum of (4.5)) (4.6) and (4.15) or (4.16), viz. 

if m < 1 ;  and 

a2# a24 h x =  H,-, az# h = H - ”’ for x < 0, (4.20) u = u-, v = u- 
ax2 ax ay ax2 y m a x a y  
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if m > 1, where @ is harmonic and f, g are arbitrary functions of y. Inside the 
body the magnetic field is harmonic since it is non-magnetic and an insulator. 
Hence we may write 

az@ az@ 
ax2 ay ax h, = H,- , h, = H ,  - 

where @ is harmonic and analytic inside the body. 

(4.21) 

5. Thin aerofoils in steady motion 
Let us now apply the theory of the previous section to the flow engendered by 

a slender convex aerofoil, symmetrically disposed with respect to the x-axis and 
whose surface is given by 

( Y I  = E X ( % )  ( - b  6 x 6 a ) ,  (5.1) 

where E is small and S is a function of x of order one, with a bounded derivative 
and vanishing at  x = - b, a. Then the boundary conditions to be satisfied impIy 
that on the aerofoil 

whence, from (4.17)-(4.20), 
v = EUX’(X) sgn y, 

since 4 is harmonic, where a prime denotes differentiation. Further, in order to 
ensure that q, H are oontinuous in the fluid the plane x = 0 must be chosen to 
pass through the aerofoil at its maximum cross-section, and then 

f(Y) = dY) = 0 
if IyI > EX(O). 

Since Uh, = H,v outside the aerofoil 

h, = EH,S’(Z) sgn y (5.4) 

on the aerofoil; hence to a first approximation 

h =  Ha3 YS’(X) 
S(X) 

(5 .5 )  

inside the aerofoil. Using the equation of continuity and (5.5) it follows that 

h, = H, log X(x) + const. (5.6) 

inside the aerofoil to a first approximation in E .  The additive constant is apparently 
indeterminate in slender wing theory. Thus although h, is small in the aerofoil 
h, is of the same order as H ,  so that the field inside is seriously perturbed.* 

Since 

* In  fact it has a logarithmic singularity at  S(z) = 0 but it must be remembered that 
singularities at isolated points are often removable in aerofoil theory: if this were the only 
objection to the present argument it would be felt that the theory were substantially 
valid. 
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on the aerofoil, i t  follows that 

1" S'(x1)dx1+log8(x)+const. ( - b  < x < 0) ,  (5.8) 
E 

W ( Y )  = -- 2n.4 x-x1 

where y = ES(X), with a similar formula for f (y ) .  Thus if m < 1 the magnetic 
field and the velocity field are seriously distorted inside the planes y = eS'(O), 
and since this region is the most vital part of the fluid the initial assumption that 
the disturbances remain small must be regarded as incorrect. If m > 1 the 
situation is even more serious for (5.6) contradicts (4.20) and so no solution is 
possible at all. A study of the initial motion of the fluid past the aerofoil from a 
state of rest shows that the motion in which the disturbances are small in fact 
breaks down straight away. The reason is that ahead of the body, according to 
small disturbance theory, no Alfvh waves can occur. Hence, on that part of 
the boundary for which x < 0 the continuity of h,, h?, implies that the magnetic 
field inside the aerofoil is given by the analytic continuation of q5. But at t = 0 + , 
$ is due to a source distribution in the aerofoil along the x-axis and hence so is 
the magnetic field. This is a contradiction, since the aerofoil is non-magnetic. 
It should be noted that the difficulties in the theory when m > 1 are due entirely 
to the linearization of the equations. When the full equations are used, Alfvbn 
waves have no difficulty propagating into the fluid from the aerofoil. If the more 
general boundary condition (3.6) is used instead of (3.7) the theory also breaks 
down. The reason is that any restriction on the tangential component of q implies 
that the value of v at the boundary is not small in comparison with U. 

The main conclusion to be drawn from the work of this section may be stated 
in the following way. Let a thin non-conducting aerofoil be set in motion, with 
uniform velocity U + 0 in a direction parallel to its length through a perfectly 
conducting fluid; then the perturbation in the state of the fluid caused by the 
motion of the aerofoil cannot ultimately become steady if it  remains small. 

There is one exception, however. If m < 1 it is possible to obtain a consistent 
linearized theory of the motion because the fluid velocity and not merely its 
perturbation component may be assumed small. The ultimate motion in this 
case is discussed in the next section. 

6. The slow motion of a body in a perfectly conducting fluid 
Theequations whichgovern thestate of the fluid in this limiting problem are the 

same as (4.2)-(4.4), provided we neglect the terms in them containing U as a 
multiplicative factor. It is assumed until proved otherwise that the disturbances 
remain small; it is worth noting, however, that it  is no longer necessary to restrict 
the aerofoil to be thin. If the theory is valid at  all it is valid for all bodies. The 
general solution of the equations is now 

(a )  For x > 0, 

u=-+uf(l-y,y). az$ X 

at ax I 
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(6.2) 

where Q is harmonic and of the same order as U, while 

(6.3) 
v=- Hm 

(47TP)*' 
From (6.1) and (6.2), ZI and h, may be written down. In  particular, if the motion 
of the fluid is ultimately steady we have, using (4.14), 

u = Uf(y), v = 0, h, = H, a2Q - U(anp)frf(y), h, = H ,  ~ (6.4) axay 
if x > 0; and 

if x < 0. Further 

Suppose now that the body is convex and denote its boundary by X. Then the 
plane x = 0 must contain its maximum cross-section, and if further this cross- 
section lies between y = ? c it  follows that 

(6.7) I Y '  < "'> 9(Y) =f(Y) = 1 for 

9(Y) = f ( Y )  = 0 for IYI ' c, 

to satisfy the condition on the velocity at S. According to (6.7) the fluid contained 
within I yI = c is completely at  rest, while outside I yI = c on the other hand it 
moves with uniform velocity U completely undisturbed by the presence of the 
body. In  order to find the magnetic field, let it  be given by 

inside X where $ is harmonic and regular there. Since all components of H must 
be continuous at X, it  follows that 

(6.10) 

The detailed properties of $, Q depend on the explicit form taken by X; as 
an example we shall now consider the case of a circular cylinder whose boundary 

r = c, (6.11) is given by 

where r cos 0 = x, r sin 8 = y. 
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Let 

93 

(6.12) 

(6.13) 

where A,, B, are all constants to be found. From (6.9) 

03 m 

0 2 
-&4,sin(n+1)8 = -ZB,sin(n-l)@, 

i.e. B, = A,-2 (n 2 2 ) ,  (6.14) 
whence from (6.10) 

4u (-)s cos(2s+1)8, 
U m 

- 2  A,cos(n+1)8-B - -sgn(cos#) = - - 
n=O V 71Vs,02s+ 1 

i.e. 
2U( - )s+l 

2s - Vn(2s+ 1) 
Bl = 0, A2s+1 = 0, A - (8 = 0,1,2, ...). (6.15) 

Using (6.15) in conjunction with (6. la), it is a straightforward matter to show that 

while all.lax differs from a+lax by a constant only. According to (6.16) the mag- 
netic field has a logarithmic singularity at x = 0, y = f c and so the assumption 
of small disturbances breaks down in the neighbourhood of these points. Sirxe 
U is small the region in which the basic assumption of small disturbances is 
invalid is exponentially small, and in consequence it is unlikely that the correc- 
tion when the full equations are used will be significant. In  fact the breakdown 
of the small-disturbance theory in this problem would seem to be of negligible 
importance when compared with the breakdown in conventional thin aerofoil 
theory. It should be remembered, however, that that theory, unlike ours, has 
a solid corpus of exact solutions to support it. 

At large distances from the circular cylinder the total magnetic field consists of 
two parts. First, there is a component in the x-direction equal to 

H, - U(4np)B sgn x, (6.17) 

if I yI < c, and to Hm if 1 yI > c. This field does not of course tend to zero as 1x1 + 03. 

Secondly, there is a contribution due to an apparent magnetic pole at the origin 

(6.18) 
of strength 

2u 
- (4Tp)t. 
7l 

The pressure may be calculated from (6.6), and as t -+ 00 we find that 

t 
p +Po- (G) UHmsgnX for I Y I  < c, 

P +Po for Ivl > c, 
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where p ,  is a constant. Hence the force on the circular cylinder tends to 

2c - UH, per.unit thickness, u (6.19) 

in the direction of x increasing. This result is also true for all convex bodies, 
whatever their shape, provided only that their maximum thickness is 2c. 

A previous paper by the author (1956) was concerned with the motion of a 
perfectly conducting sphere through an imperfectly conducting fluid with con- 
ductivity v. Although the conclusions as to the ultimate motion of the fluid were 
the same as those obtained here there are several important points of divergence. 
First, an important condition of the previous theory is that crU < 1 SO that it  
is not strictly applicable to a perfectly conducting fluid. Secondly, the condition 
on the magnetic field at  the surface of the sphere is simply that the normal com- 
ponent of the perturbed field should vanish while the tangential component may 
be discontinuous. This condition can be satisfied without the necessity for any 
Alfvh waves and in fact as cr -+ 00 it was shown that the perturbed field increased 
indefinitely without changing the velocity field. Thus if the body is a perfect 
conductor, no matter how slowly it moves through a perfectly conducting fluid 
we can expect the magnetic field to be seriously perturbed ultimately. This is 
because there is nothing to prevent the build-up of current when U is small. In  
the present problem the build-up is controlled by the Alfvh waves radiated 
from the body. Finally, it should be noted that in the earlier problem the 
magnetic field was ultimately uniform and there was no force on the body. 

7. Discussion 
The steady motion of a non-conducting body through a perfectly conducting 

inviscid fluid in the presence of an aligned magnetic field has been shown to be 
a formidable problem. If one considers only the steady state it is found that the 
motion of the fluid is indeterminate depending on two arbitrary functions of the 
stream function @. If the conditions a long way upstream and downstream are 
uniform, then both of these functions can be found, but it must be expected that 
such a simple state of affairs will not exist in general. 

These unknown functions can be found in any particular case by examining 
how the steady state is set up. For example, this may be done by setting the body 
in motion and tracing the behaviour of the fluid as t -+ 00. In  such a method the 
fluid velocity and the magnetic field are uniquely determinate at all values of t  
including t = 00, and so we can expect to obtain some information about the 
unknown functions of @ by considering the unsteady equations of motion. This 
can be done fairly easily if the perturbations are small, and we have been able to 
find the properties of the ultimate flow assuming that the perturbations are small. 
On applying these properties to the motion of thin aerofoils, however, it is found 
that the ultimate motion is either not steady or not small, because otherwise 
large disturbances occur in the magnetic field in the body. One exceptional case, 
when the applied magnetic field is strong, can be successfully carried through and 
consistent results are found. Of these the most important is that the fluid inside 
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planes touching the body and parallel to the imposed magnetic field moves with 
the body as if solid. This result is true for all bodies and not only for thin aerofoils. 

These conclusions may be compared with a theory of thin aerofoils in a per- 
fectly conducting fluid recently developed by Sears & Resler (1959). In  their 
paper two cases are considered according as the applied magnetic field is parallel 
or perpendicular to the direction of motion of the aerofoil, but we are concerned 
only with the first of these here. In the theory it is assumed that the conditions 
at infinity both upstream and downstream of the body are undisturbed, in which 
case the stream function is harmonic exactly as if there were no magnetic field, 
and the magnetic field is zero inside the body. All the requirements which can be 
derived from steady state equations and boundary conditions are satisfied. 
Attractive as this theory is, it is only one of an infinite number of equally self- 
consistent theories: further the assumption that conditions a t  infinity are un- 
disturbed, while in accord with the corresponding theory in the absence of a 
magnetic field, is not in accord with the corresponding theory for a transverse 
magnetic field in which the effect of the aerofoil extends indefinitely in certain 
directions: again as m -+ 0 and the speed of the aerofoil is reduced to zero, the 
magnetic field is not uniform everywhere since it must be zero inside the body. 

None of these features implies that the theory is invalid but they do make it 
questionable whether it is realistic, i.e. can be produced in an experiment. 
Certainly if by some means the motion envisaged could be set up then there is 
absolutely no reason why it should not continue. On the other hand the same is 
true of an infinity of other solutions. The natural way of setting up a steady motion 
is to set up the field first and then start the relative motion of body and fluid. 
Accordingly the steady motion required is preceded by an unsteady motion in 
which disturbances from the uniform state are small if the body is thin, and so 
the work of the present paper is relevant to the correct description of the ultimate 
steady motion. The conclusions of the paper for all except small m do not abso- 
lutely contradict any of the features of the Sears & Resler theory but the way in 
which disturbances propagate to infinity in finite form make it unlikely to be 
realistic. The solution when m is small, however, contradicts the conclusions of 
their theory in so many ways, of which the most important are: (i) the conditions 
at infinity are disturbed, (ii) the fluid velocity is either reduced to rest relative to 
the body or is undisturbed, (iii) the magnetic field consists of a harmonic element 
and a piecewise constant element, (iv) the body experiences a drag, that when 
m < 1 their theory must be rejected for a steady motion which is set up by the 
unsteady process stated above. Further, in view of the doubts expressed above 
its relevance must be queried when m is not small and in particular when m < 1.  

A very recent paper by Greenspan & Carrier (1959) provides some confirmation 
of this view. They consider the hydromagnetic boundary layer on a fixed semi- 
infinite flat plate defined by x > 0, y = 0; the fluid is highly conducting and 
almost inviscid and the conditions at infinity are exactly the same as in the 
present paper. Their main conclusion is that the boundary layer exists in its 
conventional form only if m > 1. If m < 1 it  leads to a contradiction suggesting 
that the problem is incorrectly posed, which is in accord with our view that the 
flow at infinity upstream is disturbed by the presence of the plate. 
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We emphasize that these doubts refer to the description of the ultimate state 
of the motion of the fluid if it is either started from rest or, more generally, if 
the velocity of the fluid and the magnetic field are each almost uniform st some 
stage before the steady state is reached. For a steady state achieved without 
satisfying these conditions the objections do not apply. 

REFERENCES 

GREENSPAN, H. P. & CARRIER, G. F. 1959 J .  Fluid Mech. 6 ,  77. 
LUDFORD, G. S. S. 1959 Archive Rational Mech. Anal. 3,  14. 
SEARS, W. R. & RESLER, E. L. 1959 J .  Fluid Mech. 5 ,  257. 
STEWARTSON, K. 1956 Proc. Camb. Phil. SOC. 52, 301. 
STEWARTSON, K. 1957 PTOC. Camb. Phil. SOC. 53, 774. 


